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Variational calculation of the effective fluid permeability of heterogeneous media
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We evaluate the effective permeability of heterogeneous media with Gaussian local permeability disorder
using the replica-variational approach. We obtain integral equations that determine the effective permeability
kernel, and we study specific cases that admit analytical solutions. Specifically, in the case of homogeneous
disorder we obtain a variational estimate for the uniform effective permeability. We compare the results of our
analytical calculations with experimental and numerical data. Finally, we model the behavior of the effective
permeability in the preasymptotic regime by means of momentum filters. Explicit finite-size expressions are
obtained in terms of a support function that increases monotonically with the ratio of the support scale over the
correlation length of the disorder. It is found that the asymptotic effective permeability is approached at a
slower rate than expecte[51063-651X97)10806-9

PACS numbgs): 47.55.Mh, 81.05.Rm, 92.40.Cy, 92.40.Kf

I. INTRODUCTION ability. In the asymptotic limit, which is obtained for infinite
dimensionless support scale, the effective permeability be-
Heterogeneous media have important technological andomes independent of the support s¢al®]. The preasymp-
environmental applications, and their properties over a widéotic regime is dispersive, and the effective permeability is
range of scales are a subject of continuing investigation. Imepresented by means of a non-local effective kefthé-
particular, the transport properties of geological porous mei3]. In the case of homogeneous mean pressure gradient a
dia are crucial in determining the fate of pollutants dispersediniform effective permeability is obtained that depends on
in the ground watef1] as well as for oil recovery2]. The  the support scalgl4,15 and the boundary conditioj46].
complexities of heterogeneous media are due to the complexe were motivated to study the preasymptotic behavior in
structure of the fluid-solid interface and partial characterizajight of experimental studies that show a definite scale de-
tion. In view of these considerations, random fie]@$ are pendence. Field measurements exHib@, 17 an increase of
often used to represent heterogeneous media at a certain gy permeability with the support scale. On the other hand,

czl ;calg.bThe prope]rctlef? of the medium at Ir]arggr s::ales l&mall-scale laboratory experiments on natural porous media
obtained by means of effective parameters that involve avet; .y merical investigations indicate that the effective per-

aging over the random fluctuations. Within the stochasticmeability decreases with increasing support sEa83

framework, the effective permeability is defined as the linear We use the replica-variational approach[#9,2q in or-

coefficient that relates the mean fluid flux to the mean PreS4er to evaluate the ensemble average over the fluctuations
sure gradient. However, this definition is not unique: while it 9 '

is commonly used in analytical studi¢4,5], in numerical This gpproach Ieaq.s to a system of integral qugtions for the
simulations a definition based on the spatial avexagenple effective permeability kernel that we solve explicitly in spe-
mean of the local flux is preferred6]. The stochastic and cific cases. In the case of homogeneous disorder the nonlocal

sample means are equal if and only if the flux and the preslgernel is _;hown to lead to_ the wgll-knoyvn uniform effective_
sure gradient are ergodic. Since the ergodicity is a thermdeermeability. Our theoretical estimate is shown to approxi-
dynamic limit property[?]’ a necessarybut not Sufﬁcienl mate aCCUrater eXperimenta| measurements of the effective
condition for using the sample mean as an estimator of theermeability in sandstone blocks. The effects of finite sup-
stochastic mean is that the support size be infinitely largeport scale are modeled by means of momentum filters that
than the correlation range of the disorder fluctuations; thisut off the nonlocal kernels at a threshold determined by the
condition is not met in the case of long-range correlations. Irscale of the support.
the case of short-range correlations, the ratio of the linear This paper is structured as follows: In Sec. Il we present
size of the support over the correlation length represents thihe stochastic formulation of flow, and we derive the integral
dimensionless support scale. equations that determine the effective permeability kernel. In
Random fields are used to represent the correlations of th®ec. Il we obtain general expressions for the kernel as well
porous medium. Hence, we do not explicitly investigate criti-as estimates of the asymptotic effective permeability for both
cal scaling near the percolation threshfd. In the case of isotropic and anisotropic disorder. In Sec. IV we derive by
homogeneous disorder the correlation functions are translgerturbation analysis an explicit expression for the dispersive
tionally invariant, thus leading to a uniform effective perme- part of the kernel. In Sec. V we obtain approximate estimates
for the finite-scale behavior of the effective permeability by
means of momentum filters. Finally, in Sec. VI we compare
*Electronic address: dionishri@unc.edu our analytical estimates with experimental and numerical re-
Electronic address: georgehristakos@unc.edu sults.
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Il. STOCHASTIC FORMULATION OF FLOW Ti(s8)=5;8(s—5)~Ggj(s8)K(S). (2.8
IN HETEROGENEOUS MEDIA

In the followi the Einstei i In the case of constant and homogeneous disorder, the
__'n the Tollowing, We USE the EInstein summation conven- ., , fluxQ is constant, and it leads to the local effective
tion for vector and tensor indices. An unpaired index indi- — —

cates that the expression be repeated for all values of thBanyS I.a.WQ:Keff‘]’ whgreKeﬁ is the uniform effective .
index from 1 tod, whered denotes the dimensionality of the p_ermeablllty[l]. In the dispersive case the mean flux is
medium. The tilde denotes the Fourier transform. The over9'VeN by means of the nonlocal expression

bar denotes ensemble averaging over the quenched Gaussian -

disorder. The angular brackets denote the statistical average Qi(s)zf ds’ Ki’}(s,s’)Jj(s’), (2.9
with respect to the probability distribution of the auxiliary

fields. The trace operator is denoted by Tr. WhereKi’}(s,s’) is the effective permeability kernel. In light

Consider a heterogeneous medium with a random permes; £qq (> 5 and (2.9) the mean pressure gradient is related

ability represented Iocal_ly by the random fiéds), \.NhiCh Is to the effective permeability kernel via the integral equation
assumed to be locally isotropic and macroscopically homo-

geneous, namely,

B 3(9-30(9 [ ds [ d8'Ga(55)5KGu(S I3,
K(s)=K+ 5K(s), 2.0 (2.10

where K denotes the arithmetic mean an#(s) the zero- whereaKfm(s,s’)zK_ﬁjm(S(s— §')—Kk,(s8) represents the
mean fluctuations. We assume that the fluctuations are nofiyctuation component of the kernel. An equivalent expres-
mally distributed with a two-point correlation function given sjon can be obtained by means of E2.7), i.e.,

by

cu(s—5) = K(9 K. 22 3o [ My, @1

The variance of the permeability fluctuations is denoted bywhere

oﬁch(O) and the coefficient of variation by = oy /K. .

The local pressure is denoted B(s) and its gradient by Mij(s,s)=T;*(ss). (212
J(s)=—VP(s). The fluid flux is determined from Darcy’s ) ) . i

law Q()=K(s)J(s). The equation of flux continuity for N view c_>f Egs.(2.10 and(2.11) the fql_lowmg relationship
steady-state flow is given by - Q(s)=0, and in view of Eq. 1S gstabllsheq betwee_n the permeability kernel and the two-
(2.1) it can be expressed as follows: point correlation functiorM; (s,s’):

KV2P(s)+V - 8K(s)VP(s)=0. 2.3 Mi; (k)= 8; + Goin(k) 5K (K), (2.13
In a homogeneous medium of uniform permeabili?ythe where
pressure satisfies the Laplace equalidiy(s)=0. The as-

T % _KS _k*
sociated Green’s function satisfies the Poisson equation OKij(K) =K 3 = Kig (K, 219

The correlation functioﬂij(k) can be calculated using the
field-theoretic formulation of20] that we outline briefly
here. First, the fieIdTi]l(s,s’) is expressed in terms af

KV2Gy(ss)=—d(s—s). (2.9

The solution of Eq.(2.3) can be expressed in a self-

consistent form as follows: auxiliary fields ¢;(s), i=1,...,d and their complex conju-
' gatesg’ (s) as follows:
Ji(S):JOi(SH‘f ds'Gij(s,8') 6K(s')Ji(s'), (2.9 Tﬂl(ssl):<¢i*(5)¢j(5/)>- (2.19
The brackets denote the average with respect to the Gaussian

where Jo(5) = — VPy(9) is the deterministic component of

the pressure gradient a@y; (s,s') is the dipolar tensdr21] measure
d
1
)= ZColsS) P(&f ¢->=—exp<‘ > | asfasares
GOij(S,S)ZTaSj. (2.6 i i Z i=1 i
By means of an iterative expansion of the pressure gradient ><Ti-(s,s’)¢-(s’)), (2.16
in Eq. (2.5 the Neumann series is generated. Summation of . .

the series leads to the following exact expression ) g
where the integrali;_, [dsfds’ ¢ (9 Ti;(s,s") ¢;(s') rep-
—1 / resents the disorder Hamiltonian a@ddenotes the corre-
‘]i(s):f ds'T;;°(s,8")Joj(S'), (2.7 sponding partition function. Using the replica trif22], i.e.,
Z Unz=lim,_, (InZ")/n, we obtain the following expres-
where the tensor kerndl; is given by sion for the correlation functiof2.15:



7290 DIONISSIOS T. HRISTOPULOS AND GEORGE CHRISTAKOS 55

T;X(ss)=lim <E M> , (2.17)
n—0 \a=1 n Hegr

whereH denotes the effective Hamiltonian agd,,  the average with respect to the effective measure, which involves a

functional integral of the replica fields{(s), ¢ “(s), wherei=1,...d anda=1,...n. The standard procedure for evaluating

the stochastic average af; (s,s') over the disorder is as follows: first, the disorder average of the expre€aibn is
determined assuming that the number of replicas is an integer; this leads to an effective probability measure. Then, the
functional integral over the replicas is estimated using a variational approximation. The latter is obtained by establishing an
upper bound for the free energy functional of the effective probability measure by means of a variational free energy. Finally,
the correlation functioM;;(s,s’) is obtained by minimizing the upper bound at the limit-0. This procedure is based on the
assumptions that the order of the zero-replica limit and the stochastic average operator can be commuted, and that the analytic
continuation of the average over the replica fields when0 exists. The first step leads to a disordered-averaged probability

measureP (¢, ¢ “)cexd —Her(d*, & “)]. The effective HamiltoniarH (4,5 @) is given by

d n d n
Mo 61 67 9=2, 2 | ddlefol~3 > > dsf ds'fdslf ds,C(81—~ ) Goij (5= 1)
X Gok(S' —%) b7 “(9)¢f'(s1) i °(s) ¢ (52) (218

and it involves a standard quartic coupling between replicq’{;j(k)_ The latter includes the mean-field contributiﬁ,

flzldst._ The Sﬁcgq.‘z step mvolvis the appro;qmatlon ?.f thleand the fluctuation parﬁR:j(k) that represents the hetero-
ehiective probability measure by means of a vara Ionageneity of the medium. As we show below, the finite-size

Gaussian measure effects are due to the fluctuation part. In the following sec-
Po(®. * ) ocex — @ prayy 21 tion we investigate certain cases in which explicit solutions
ol $, A extl —Hol &7, 47 219 for the kernel are possible.

where the HamiltoniarHy( ", ¢ “) couples the replica
fields diagonally by means of the two-point function
Ci}l(as’). The variational approximation of the correlation

[ll. SOLUTIONS FOR THE EFFECTIVE
PERMEABILITY KERNEL

function Mj;(s,s') is given by the optimal variational corre-  First we investigate stochasticaliynacroscopically iso-
lation, denoted by} (s,s"). The latter is obtained using the tropic media in which the two-point correlatian (s—s') is
following variational inequality a spherically symmetric function of the distance |s—s'|.

Y iew v ve This_restriction does not Iir_nit the .analysis, sinc_e anisotropic

<t o+ lim (Hei( D", 7 “) —Ho( b, b7 “))o media can be reduced to isotropic by a rescaling of the co-

=0 ho vn ' ordinate axes as we show below. The Fourier transform of

(2.20 the isotropic dipolar tensor is given by

whereV denotes the volume of the systefndenotes the Goit (K) = — kl_kJ_ (3.1)
free-energy densityper unit volume and per replicdunc- o1 k2K’ '

tional of the effective probability measuré, denotes the

Gaussian free energy density, ahdl, denotes the average and the effective permeability kernel is generally expressed
over the Gaussian measure. Thus, the replica averages on th® follows[23]:

right-hand side of Eq(2.20 can be explicitly evaluated by =, — = =

means of Gaussian integrals. The final step involves the K7 (k) =K (k) Pij (k) + K¢ (KR (k), 3.2
minimization of the functional on the right-hand side of Eg. ~ N ~.
(2.20) with respect to the variational correlation. This proce—WhereKl*(k) denotes the longitudinal and; (k) the trans-

dure, in view of Eq(2.13), leads to the following relation for ~Verse effective permeability componeng; (k) andR;;(k)
the effective permeability kernel: represent orthogonal, idempotent projection operators that in

momentum space are given by

~ — o dky _ ~
I:j(k)_5ij:f(2—7Tl)c{CK(k1)Mkm(k—k1) E--(k)=k—i|2(i 3.3
1) k .
X Gomj(k—ky), 220
where in Eq.(2.20) Ei’}(k) has been replaced Wiﬂij(k). ﬁij(k)zfsij _Eij(k)- (3.4)

The expression&2.13 and(2.21) provide a system of equa-
tions that determines the effective permeability kernelEquation(2.13 then becomes



Al

~ K—K¥*(k
Mi(k)= 68+ L)

Py (K). (3.5

=

Equation (3.9 can be inverted, using the idempotence of

Pij(k), to obtain

M;;(k)=R;; (k) +P;; (k) (3.6)

K (k)

The two-point correlation/ ij (k) can be eliminated from Eqg.
(2.22) using Eq.(3.6) combined with the properties of the
projectors. The following equation is thus obtained:
Eij(kl)
K" (k1)

~ — dk; _
Kij (k)= 6;;K— m Ck(k—ky)

3.7

Equation (3.7) can be solved exactly at the infrared limit
ké—0, where we obtain

~ — ck(r=0)
K*(0)=8K— —=—o
(0= KF(0)

=% K== o]
dK7(0)

ez (00
Sd ij d

(3.9
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In the case of a uniform mean pressure gradgnthe
following uniform effective permeability is obtained after
integration of the exact kernel

Keﬁ(oo)=f ds'K*(s—s')=K*(k=0). (3.13

This_asymptotidK () is involved in the effective Darcy’s
law Q=K i(0)-J, that is widely used in hydrologjl]. In
view of Egs.(3.2) and(3.10), K¢(e©) can be replaced by the
scalar permeability
Kes(2) =K (0). (3.14

The variational approximation d€.«(c) given by Eq.(3.11),
satisfies the standard bounds

(K™D 1<Kep(2)<K. (319

In view of Egs.(3.12 and (3.14 the first-order approxima-
tion of the effective permeability is given by

2

— O
1) _ K
KE=K—

— 3.
K (3.1

It should be emphasized that the lowest disorder correction is
fully determined by two-point correlations. Hence, it is a

where [dQ4 denotes integration over the surface of thevalid approximation even for non-Gaussian permeability dis-
d-dimensional unit sphere. In view of the projection decom-tributions.

position of the effective permeability kernel E@.8) leads

In the preasymptotic regime E(B.7) leads to the follow-

to the following expressions for the longitudinal and trans-ing expressions for the longitudinal and transverse compo-

verse components

K¥(0)=K- i
I( )_ dRr(O)

(3.9

and
K¥(0)=KF(0), (3.10

whereKj (0)=Kf (k=0) andK} (0)=Kj (k=0). The so-
lution of Eq. (3.9 for K[ (0) is
40_2 1/2
1— =K) .

dK?

Kl*(O)zE 1+
2

(3.1)

nents:

~ —  dky C(k—kp) (K-kp)?
*(K)=K— a . (3.
itk =K j(zw)d Kf(ky) k%4 (8.4

and

- — 1 dk, Cu(k—ky) (k-kyp)?

* k = — = -
Kido=K d—1f<2w>d K (k) { K
(3.18

Note that Eq.(3.17 is a nonlinear integral equation in
K (k), while K¥ (k) is given by means of a momentum
integral of theK[" (k). The longitudinal(transversgperme-
ability can be decomposed into a mean part equél tnd a

Equation(3.1)) is the variational approximation obtained by fluctuation partdK; (k) [6K¥(k)]. The kernelsK (k) is
means of the optimal Gaussian measure and is valid at afiven by means of the following equation:

perturbation orders. Hence, we believe that it provides more

accurate estimates than low-order perturbation calculations
in the case of moderate heterogeneity. At the limit of weak

heterogeneityu<1 the longitudinal kerneK (0) is given
by the first-order approximation

2
~ — O
Kt (0) =K~ =

K (3.12

which agrees with standard first-order perturbation analysis

[12].

dk;  CTi(k—ky) (k-kq)?
(2m)9 K—K* (k) kK2

5K (k)= f (3.19

The ultraviolet limit of 5?(]*(k) is obtained from EQq(3.19
by means of the transformatidd =k —k; that leads to the
following expression:

2
—~ g,
SK¥ () = ——

—_— 2
K= oK (o) 320
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Using Eq.(3.20 the longitudinal kerneRT(k) can be ex- -
pressed as 7
Ki (k) =K — 8K} (20) + 8K 1od K), (3.20)
where
SK pod k) = K (22) — 8K (K).. (3.22

The uniform part ian*(k) represents the local component
that leads to aé function kernel in real space. The
5K nodK) represents the nonlocal component of the kernel.
Analogous relations hold for the transverse kerkgl(k).

Anisotropic Fluctuation Factors

Hence, the fluctuation kernel can be decomposed into local l
and nonlocal components as follows: _ "
S (k) =[ 5K} () Py (k) + 5K} (=) Ryj (k)] ]
—[SKF oK) Py (K) + 0K iod KO Ry (K) 1. d
lllIllllllllllllllllllllllll
(3.23 0 2 4 6 8 10 12 14

H . . A . R .
Finally, we evaluate the effective kernel in the case of a nisotropy Ratio

stratified, macroscopically anisotropic, three-dimensional
medium with correlation lengtl§, = £,= ¢, in the longitudi-
nal (in-plang direction andé;=¢, =e¢, in the transverse
(out-of-plane direction, wheree denotes the anisotropy ra-
tio. In this case, Eq(3.7) is valid in the rescaled coordinate
systemk{ = &k; in which the medium looks isotropic. The
following expression is obtained:

FIG. 1. Plot of the longitudinal and transverse components of
the anisotropy tensor vs the anisotropy ratio.

be obtained by means of the iterative metfj@é] starting

with K,*(O)(k)=K as the initial approximation. A different

approach is by means of a perturbation expan§&§} that

leads to a power series in the permeability variance. The

o2 partial sum of all orders lower than or equalrtds denoted

=—— ¥, (3.24 by Kf™(k). Since Eq.(3.17 is nonlinearK, (k) is in

Ky (0) general different fromK*(M(k), with the exception ofn

=0 andn=1. Both methods should converge for weak dis-

order u<1. Let D(k) denote the dispersive part of the ef-
&§ f dQ 0;6; fective permeability kernel that represents the following in-

17 g2 ) am (sir? x+e?cod x)’ (329 finite sum:

and ¢; denotes the direction cosine. The elements of the di- _ S 2n
agonal anisotropy tensor are given by D(k) ngl Gn(k)™ “.D

9 g 1 e? tan‘l\/ez—l_1 a0 In view of Eq. (4.1) Ki (k)=K[1—D(k)], and Eq.(3.9) is
n=r2me?-1) 21 . (3.28 then expressed as

KE(0)=8,;K—

where 9;; is the anisotropy tensor

dky Pr(k—ky) (k-kp)?

e? tan 1ye’—1 D(K) = 12
a33=ez_1(1— — ) (3.27 W=r") Gm? 1-Dky) KA

4.2

wherepy (k) denotes the Fourier transform of the permeabil-
?[y correlation function. The functiong,(k) are determined
Oby equating the coefficients of equal powersgnon both
sides of Eq(4.2). The first dispersion function is

and they are plotted in Fig. 1 versus the anisotropy ratio. Th
effect of the fluctuations is more pronounced, leading t
lower effective permeability, in the direction of higher cor-
relation.

dk, K3 N (k—k-kq)? _
27T)d (k—k1)2 PK(kl),
(4.3

IV. PERTURBATION ANALYSIS AND SOLUTION gl(k):f def
OF THE DISPERSIVE PART o (

The main focus of the analysis is the solution of the non- .
linear integral equatioi3.17) that determines the longitudi- wherek is the unit vector in the direction df. It can be
nal effective permeability kernel. Equatiaf3.17 can be shown that the,(k) are positive everywhere; thus, the con-
classified as a nonlinear Fredholm equation of the secondergence criterion for the seriesi€g,,. 1(k)<g,(k) for all
kind that can be solved numericall24,25. A solution can n=1, and the error incurred by terminating the series at or-
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convolution of the permeability two-point correlation with
the projection operatd?. In the Appendix we also obtain the
infrared limit

2

—~ g
lim oK* (k)= —, 4.7
ké—0 ! ( 3K

which is in agreement with Eq.3.12, and the ultraviolet

limit

lim oKD (k)= —. 4.9
ké— o

First-Order Fluctuation Terms

The nonlocal part of the permeability kernel perturbation is
given by

2
SR (k)= %—K[gl(w)—gl(kg)]- 4.9

(=] Tritffsrrfsrrryrrrryrrrri

0 10 20 30 40 50 The functionsK}:(H(k) is a positive and monotonically de-
k& creasing function of the dimensionless momenkgnwhich
tends to zero at infinity. In Fig. Zcurve 2 we plot the
FIG. 2. Plots of the dispersive pagy(k) (curve 1 and the nonlocal componeng;(=)—g;(k&) versuské.
nonlocal componeng, () —g,(k¢) (curve 2 of the effective per-

meability vs the dimensionless momentk#. Both curves have V. EFFECTIVE PERMEABILITY OF FINITE MEDIUM
been obtained for an exponential permeability correlation model
with length & The analysis of the effective permeability kernel equa-

tions in Secs. Il and IV above is based on the assumption of

der n is always less tham, (k) «?"** [27]. Hence, the @ medium with an infinite support scale, which is in agree-
effective permeability kernel can be approximated with arbi-ment with a scale-independent effective permeability. This
trary accuracy in the case<1. assumption is justified only if the size of the support signifi-
We assume a Weak|y heterogeneous medium \th Cantly exceeds the memory Iength of the effective kernel. In
<1. In the case of a one-dimensional medium we obtain théhe case of a medium with finite support, the effective per-

following expression for the perturbatian (k): meability depends on the boundaries of the medium, namely,
on the geometry of the support and the imposed boundary
= dky _ conditions on the pressure field. In the following, it is as-
gl(k)—f o p(ky)=1. (4.9 sumed that an isotropic length scélecharacterizes the size

of the support. The effective permeability should reflect

changes in the support scale due to the cutoff of correlations

Hence, ford=1 the effective permeability kernel is purely petween points separated by a distance greater than allowed
local. Next, we assume an isotropic medium with an expopy the support size. A detailed analysis of the effective per-
nential two-point permeability correlation function meability of finite media should employ the homogeneous
Green'’s function that honors the boundary conditions. How-

r ever, the Green’s function in a bounded domain is usually

pK(r)zexp< _E ' (4.5 obtained in terms of an infinite series, e.g., by means of an
eigenfunction expansion, and it lacks translational invari-

where¢ is the isotropic permeability correlation length. The ance. This complicates the mathematical analysis so that
Fourier transform opy(r) is given by even low-order cal_culat|0ns become very ted!ous. Here, we
present an approximate model for the finite-size effects that

2dgd 12 1 circumvents these difficulties; this model can be viewed as
pr(k)= — , (4.6)  an estimator that interpolates the effective permeability be-
I'(2—d/2) (1+ &k (d+1)/2 tween the arithmetic mean and the asymptotic value. We

assume Dirichlet pressure boundaries in the longitudinal di-
whereI'() denotes the” function. The functiong;(k) is  rection and Neumann no-flow boundaries in the transverse
evaluated in the Appendix fat= 3, and it is plotted in Fig. directions. We use the infinite Green’s function and thus ne-
2 (curve ) versus the dimensionless momentk& The  glect finite-size effects near the boundaries. This assumption
function g4(k) and consequentIySKr‘(l)(k) increase mono- permits the use of the translationally invariant equations for
tonically with k¢é. Both functions have a broader Fourier the effective permeability obtained in Secs. II-IV above.
spectrum than the two-point correlatigfh.6), which decays We model the effect of the support on the effective perme-
to zero within the rang&é=1. This behavior is due to the ability by means of fluctuation filters that cut off the
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spectral density outside a sphere with radius equad,ig Where%K(k;A) is a functional of the permeability distribu-
=A=2#/L in momentum space. The mean flux at location tion that represents the spectral densityd&f.(A) and sat-
is then given by the following filtered equation: isfies the equation

K (k)
T d

where the convolution integral is unconstrained, but the filtef, \iew of Egs.(5.3), (5.4), and (5.7)—(5.9) the scalar per-
function® , (s—s') cuts off the integral when the poist is meability is given b)} '

located outside the support boundaries. The nonlocal effec-

tive permeabilityk } (s—s’) also has an implicit scale depen- Keﬁ(A)=K_— SKen(A), (5.10
dence, which we investigate in more detail below. The effect

of the filter depends on the size of the memory length of thevhereK .x(A) and 5K .x(A) represent the magnitudes of the
kernelK?} (s—¢') relative to the support scale: if the memory diagonal kernel .(A) and 3K #(A). The fluctuation com-
length is significantly smaller than the support scale, the filponentsK «(A) is given by

ter can be eliminated from E@5.1) leading to a mean flux

@(s)=fdS’d)A(s—S’)[KX(s—S’)-IS’)], (5.0 T(k:A) (5.9

independent of the support size. In the case of a uniform _ dk ~ -
mean pressure gradient E&.1) can be expressed as OKef(A)= 2 D (K)Zk (K A). (5.1
Q(A)=Kex(A)J, (529  The asymptotic effective permeabilit§K«(0) is given in

terms of the spectral density functidi(k; A) by means of

where the scale-dependent uniform effective permeability i?he expression

given by
- dk - ~ SKe(A=0)=T(k=0;A=0). (5.12
K (A)=Kl—f—drd> (k) K3 (k), (5.3 ~

e (2m? A A The spectral densitfx(k;A) can be evaluated using Egs.

and the fluctuation permeability component is (5.9 and(3.17) that lead to the following:

dk — o~ 7 (k-A)z—f dky C(k—ky) 5 (k). (5.13
%eﬁ(A):JWQA(k)ﬁKA(k) (5.9 KA d (27T)d K|*(k1) AR ’
Let V4(A) denote the volume of thd-dimensional sphere |n light of Eq. (4.2) 5K(k;A) is given by means of the fol-
and 6(A —K) the unit step function. The filter function lowing expression:
~ (2m)° - o [ dky Pr(k—k)W,(k
(k)= 3y HA—K 59 Foon)= 76 [ Lo pkk)Walke) gy

dK J 2m?®  1-D(ky)

eliminates oK .4(A) for a pointlike support, while it yields . L o
the asymptotic effective permeability for an infinite support. 1 "€ first-order approximation of the spectral density is

The integral equations that determine the effective perme- 2
ability kernels are also filtered with an appropriate function 'Zu<1>(k'A)= U_K_'f“(l)(k.A) (5.15
W, (k) that eliminates the fluctuations in the case of vanish- o dK Y

ing support size and yields the nonfiltered equations, namely _
(3.17 and(3.18, in the case of infinite support scale. Thesewheref()(k;A) denotes the normalized spectral density that
constraints are satisfied by the momentum filter represents the following integral

Yatlg ==, 50 k) = [ etk (k). (6518

In the case of macroscopic isotropy the fluctuation compo-

nent 8K (A) of Eqg. (5.4) is expressed as Thus, the first-order fluctuation perturbation & q(A) is
1 - given by
HKerl A= 50 fo dk K™ 1, (k) fdﬂdéKX(k) : ,
g
(57 SKGH ()= (A, (5.19

where aZ;(k) is a tensor with isotropic momentum depen- ) )
: : ~where the support function”(A) represents the followin
dence. Evaluation of the surface integral leads to an isodi¥ PP p 9

agonal permeability tensor following the equation integral

~ ~ d (A =
f dQgK3 (k) =1Q4Zk (K A), (5.9 h(“(A>=pf0 dk K- (kA). (518
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First-Order Density Function
First-Order Density Function
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Ag

FIG. 3. The first-order spectral density functi®(k; A) vs the FIG. 4. The first-order spectral density functith? (k; A) vs the

dimensionless momentuke for an exponential permeability cor- dimensionless cutofi\ £ for an exponential permeability correlation
relation model. Five different values of the dimensionless cutgff Model. Three different values of the dimensionless momentum are

are shown:A¢=2 (curve 3, A¢=4 (curve 2, A¢=6 (curve 3, shown:ké=2 (curve 1), ké=6 (curve 2, andké=10 (curve 3.
A&=8 (curve 4, andA =10 (curve 5.

L
In the case of a three-dimensional medium with exponential n(l)(g) =—In[h™(A)—-1], (5.20)
decay of permeability correlations, the functioH&)(k;A)

andh™(A) are given by the following expressions:
which we plot in Fig. 6 versus the dimensionless support

- 1+ E(k—A)2 scale. If the support function decreased exponentially, the
fO(kA)=1— okém | 1+ E(k+ A)2 plot of »(1)(L/£) would be a straight line with positive slope.
1 2¢A
|
7Ttan 1+ 20=A )} (5.19
and
101 1 4£20%—1 £ «l
hW(A)=5— —5——tan'? g—) g ©°
2 aANéE m 4N ¢ E i
1+6&2A2 - £ o]
+(W In(4é°A°+1). (5.20 § S
In Fig. 3 we plot the normalized spectral density)(k:A) g ;__’r.-
versus the dimensionless momentugfor different values - 1
of the cutoff A£&. The normalized spectral density increases £ y
monotonically and tends asymptotically to unity. In Fig. 4 o
we plot thef(!)(k; A) versus the cutoff£ for three different e
values of the momenturké. The f(Y)(k;A) is a decreasing -
function of the cutoff that tends asymptotically to zero when i
o --l-l-l-lﬂ-l-lﬂ-l-|-l-l-l-1"|—|_l—l_l—|-l'l-l_l_l

Aétends to infinity. In Fig. 5 we present a plot of the support
functionh(A) versus the cutoff. The support function de- 10 20 30 40 50
creases(increaseps monotonically with the dimensionless Ag

cutoff (support scalefrom one(zerg to zero(ong with a

rate that is slower than exponential. This becomes more evi- FIG. 5. Plot of the support function®(A) vs the dimension-
dent in terms of the function less momentum cutoff &.

(=]
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FIG. 6. Plot of the functiony™(A) vs the dimensionless sup-
port scaleL/¢.

Instead,7(Y(L/¢) is a convex up function, which indicates a
slower-than-exponential decay.

Finally, the preasymptotic uniform effective permeability
is given by

2

— T
KEp(A)=K= (A, (5.22

The finite-size behavior represented by E8122) is physi-
cally meaningful: at the ultraviolet limiA —«, i.e., for van-
ishing support length, Eq(5.22 tends to the arithmetic
mean, while at the infrared limiA — 0, i.e., for an infinite
support, Eq.(5.22 tends to the value of the asymptotic ef-
fective permeability.
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probability distribution. In the approach pt8] the effective
permeability is evaluated either experimentally or numeri-
cally using spatial averaging of the fluid flux. As we men-
tioned in the Introduction the spatial and the ensemble aver-
ages coincide only if the flux and the pressure gradient are
ergodic. The authors ifL8] have obtained permeability mea-
surements for two porous blocks of sandstone and limestone
of dimensions 1% 15X 50 cn¥. Each of the original samples
was cut into three intermediate blocks of dimensions
15% cn®, and finally 25 cylindrical plugs were obtained from
each intermediate block. The local permeability probability
distribution was inferred from the 300 samples obtained
from each block. The effective permeabilities for mixed
Dirichlet-Neumann conditions were measured at the three
scales. The effective permeability of the intermediate blocks
was also evaluated by solving Darcy’s equation numerically
and using the box integration method as explainefi1&l.
Numerical simulations were carried out on 20 random
samples that were generated based on the experimental prob-
ability distributions, and the permeability mean was evalu-
ated numerically and compared to the experimental measure-
ments. The coefficient of variation for the sandstone blocks
was found to satisfyu<<1, while for the limestone blocks it
was found thaj>1. Our low-order explicit calculations are
applicable only in the case of the sandstone experiments. For
u>1 estimates that account for the large distribution vari-
ance are required, €.49,13,28.

In Table | we compare the effective permeability obtained
using the first-order perturbation analysis above with the ex-
perimental and numerical values for the sandstone obtained
in [18]. The correlation lengths of the local permeability
were estimated if18] to be about 2% of the support length,
in view of which we use the asymptotic express{8riL6 for
the K. The first four columns of Table | are taken from
Table 5 of[18]: they represent from left to right the arith-
metic mean, the coefficient of variation, the effective perme-
ability K{"**)measured in the laboratory, and the calculated
effective permeability< &2, The fifth column is the pertur-
bation estimate obtained by means of E8;16. Note that
the third intermediate block is characterized by a measured
value that exceeds the arithmetic mean. This was explained
in [18] as being due to a large number of missing permeabil-

In this section we compare our theoretical analysis withlly data from the third block due to mechanical failu)res dur-
experimental and numerical estimates of the effective permdPd the preparation of the samples. It is clear thgY ap-

ability obtained in[18]. We begin by pointing out a system-
atic difference: in our work the effective permeability fol-

proximatesK {1°%) more accurately tha$. However,

both theK{) and theK$® overestimate the experimental

lows from a stochastic average over the local permeabilitwalue KgpfeaSl This systematic difference could be due to

TABLE |. The entries of this table provide a comparison between the laboratory v@olesnn 3 and
the numerical estimatégsolumn 4 of the permeabilities ifi3] and the variational approximatiqoolumn 9
of the effective permeability given b§8.16). All permeability values are in millidarcyl darcy=0.987x

1072 md). The asterisk denotes that the measured
bound of Eq.(3.15.

permeability of the third block fails to satisfy the upper

Sandstone K M K {peas K& K&
First Intermediate block 311 0.35 270 304 298
Second Intermediate block 250 0.46 220 243 232
* Third Intermediate block 129 0.54 150 122 116
Global block 230 0.54 210 218 208
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anisotropic effects. Finally, the effective permeability is seen APPENDIX
to decrease from the value 230 mD, which is the total arith- In this A di luate the int | of Ha.3) |
metic mean at the local scale to 208 mD at the global scal N this Appendix we evaluate the integra o H.3) for
This is in general agreement with the behavior of the suppor e exponential correlation model. The functgy(k) can be
function. However, a comprehensive test of the support funchpressed as
tion would require permeability measurements for several

3 . 2/1,2 2,2
intermediate scales and accurate characterization of the corg (y)— 2¢& fl dxf dk, k1(k*+kix“—2kk;x)
T J-1 Jo (

relation lengths. g K2+ kE— 2kkyx) (1+ £2k5)?
(A1)
VII. CONCLUSIONS
Let
We have calculated the preasymptotic effective perme-
ability of heterogeneous media using the replica-variational 1 (K2 K3x2— 2Kk X)
approach. We have given explicit solutions for the integral I%(k,kl)zf dX ———> . (A2)
-1 (k“+ k37— 2Kkx)

equations satisfied by the effective permeability kernel in
specific cases, and we have evaluated the uniform effective . ) ) ) )
permeability for homogeneous disorder. The effects of thél_’he surface_ integral is readily perforr_ned using a partial frac-
support scale have been analyzed in terms of an approximat®n expansion of the integrand leading to

model that uses momentum filtering of the fluctuations. The ) 9 12 122
finite-size behavior is obtained in terms of a support function 3k ky) = 3—(ky/k) N 1 In( k+kz)|“ (k"=k7)
that has been calculated to lowest order for exponential de- "2*™"1 2 8 \k—k, K3k,

cay of correlations. The support function has been found to (A3)
increase towards its asymptotic value at a rate that is slower

than exponential. Higher-order solutions of the integral equaThe integral over the scalar momentum is evaluated numeri-
tions that determine the effective permeability kernel meritcally using avAPLE integration routine based on an adaptive
further study, possibly by means of numerical techniqguesNewton-Cotes algorithni30]. In order to obtain exact ex-
Finally, it has been assumed in this investigation that theressions of the low and high momentum limits we use in the
disorder is homogeneous with short-range correlationsregime ké<1 a Taylor series expansion of the integrand
These assumptions do not adequately represent all naturatoundk= 0, and we evaluatg, (k) by applying the residue
porous medig 15,29, even though they are sufficient for theorem on the truncated integrand series. The first two

certain media at the laboratory scale. terms of the series expansion @f(k) are
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