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Variational calculation of the effective fluid permeability of heterogeneous media

Dionissios T. Hristopulos* and George Christakos†

Department of Environmental Sciences and Engineering, University of North Carolina, CB 7400,
Chapel Hill, North Carolina 27599-7400

~Received 22 November 1996!

We evaluate the effective permeability of heterogeneous media with Gaussian local permeability disorder
using the replica-variational approach. We obtain integral equations that determine the effective permeability
kernel, and we study specific cases that admit analytical solutions. Specifically, in the case of homogeneous
disorder we obtain a variational estimate for the uniform effective permeability. We compare the results of our
analytical calculations with experimental and numerical data. Finally, we model the behavior of the effective
permeability in the preasymptotic regime by means of momentum filters. Explicit finite-size expressions are
obtained in terms of a support function that increases monotonically with the ratio of the support scale over the
correlation length of the disorder. It is found that the asymptotic effective permeability is approached at a
slower rate than expected.@S1063-651X~97!10806-6#

PACS number~s!: 47.55.Mh, 81.05.Rm, 92.40.Cy, 92.40.Kf
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I. INTRODUCTION

Heterogeneous media have important technological
environmental applications, and their properties over a w
range of scales are a subject of continuing investigation
particular, the transport properties of geological porous m
dia are crucial in determining the fate of pollutants disper
in the ground water@1# as well as for oil recovery@2#. The
complexities of heterogeneous media are due to the com
structure of the fluid-solid interface and partial characteri
tion. In view of these considerations, random fields@3# are
often used to represent heterogeneous media at a certa
cal scale. The properties of the medium at larger scales
obtained by means of effective parameters that involve a
aging over the random fluctuations. Within the stochas
framework, the effective permeability is defined as the lin
coefficient that relates the mean fluid flux to the mean pr
sure gradient. However, this definition is not unique: while
is commonly used in analytical studies@4,5#, in numerical
simulations a definition based on the spatial average~sample
mean! of the local flux is preferred@6#. The stochastic and
sample means are equal if and only if the flux and the p
sure gradient are ergodic. Since the ergodicity is a ther
dynamic limit property@7#, a necessary~but not sufficient!
condition for using the sample mean as an estimator of
stochastic mean is that the support size be infinitely lar
than the correlation range of the disorder fluctuations;
condition is not met in the case of long-range correlations
the case of short-range correlations, the ratio of the lin
size of the support over the correlation length represents
dimensionless support scale.

Random fields are used to represent the correlations o
porous medium. Hence, we do not explicitly investigate cr
cal scaling near the percolation threshold@8#. In the case of
homogeneous disorder the correlation functions are tran
tionally invariant, thus leading to a uniform effective perm
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ability. In the asymptotic limit, which is obtained for infinit
dimensionless support scale, the effective permeability
comes independent of the support scale@1,9#. The preasymp-
totic regime is dispersive, and the effective permeability
represented by means of a non-local effective kernel@10–
13#. In the case of homogeneous mean pressure gradie
uniform effective permeability is obtained that depends
the support scale@14,15# and the boundary conditions@16#.
We were motivated to study the preasymptotic behavior
light of experimental studies that show a definite scale
pendence. Field measurements exhibit@16,17# an increase of
the permeability with the support scale. On the other ha
small-scale laboratory experiments on natural porous me
and numerical investigations indicate that the effective p
meability decreases with increasing support scale@18#.

We use the replica-variational approach of@19,20# in or-
der to evaluate the ensemble average over the fluctuati
This approach leads to a system of integral equations for
effective permeability kernel that we solve explicitly in sp
cific cases. In the case of homogeneous disorder the non
kernel is shown to lead to the well-known uniform effectiv
permeability. Our theoretical estimate is shown to appro
mate accurately experimental measurements of the effec
permeability in sandstone blocks. The effects of finite su
port scale are modeled by means of momentum filters
cut off the nonlocal kernels at a threshold determined by
scale of the support.

This paper is structured as follows: In Sec. II we pres
the stochastic formulation of flow, and we derive the integ
equations that determine the effective permeability kernel
Sec. III we obtain general expressions for the kernel as w
as estimates of the asymptotic effective permeability for b
isotropic and anisotropic disorder. In Sec. IV we derive
perturbation analysis an explicit expression for the dispers
part of the kernel. In Sec. V we obtain approximate estima
for the finite-scale behavior of the effective permeability
means of momentum filters. Finally, in Sec. VI we compa
our analytical estimates with experimental and numerical
sults.
7288 © 1997 The American Physical Society
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II. STOCHASTIC FORMULATION OF FLOW
IN HETEROGENEOUS MEDIA

In the following, we use the Einstein summation conve
tion for vector and tensor indices. An unpaired index in
cates that the expression be repeated for all values of
index from 1 tod, whered denotes the dimensionality of th
medium. The tilde denotes the Fourier transform. The ov
bar denotes ensemble averaging over the quenched Gau
disorder. The angular brackets denote the statistical ave
with respect to the probability distribution of the auxilia
fields. The trace operator is denoted by Tr.

Consider a heterogeneous medium with a random per
ability represented locally by the random fieldK(s), which is
assumed to be locally isotropic and macroscopically hom
geneous, namely,

K~s!5K̄1dK~s!, ~2.1!

where K̄ denotes the arithmetic mean anddK(s) the zero-
mean fluctuations. We assume that the fluctuations are
mally distributed with a two-point correlation function give
by

cK~s2s8!5dK~s!dK~s8!. ~2.2!

The variance of the permeability fluctuations is denoted
sK
25cK(0) and the coefficient of variation bym5sK /K̄.

The local pressure is denoted byP(s) and its gradient by
J(s)52“P(s). The fluid flux is determined from Darcy’s
law Q(s)5K(s)J(s). The equation of flux continuity for
steady-state flow is given by“•Q(s)50, and in view of Eq.
~2.1! it can be expressed as follows:

K̄¹2P~s!1“•dK~s!“P~s!50. ~2.3!

In a homogeneous medium of uniform permeabilityK̄ the
pressure satisfies the Laplace equation¹2P0(s)50. The as-
sociated Green’s function satisfies the Poisson equation

K̄¹2G0~s,s8!52d~s2s8!. ~2.4!

The solution of Eq. ~2.3! can be expressed in a sel
consistent form as follows:

Ji~s!5J0i~s!1E ds8G0i j ~s,s8!dK~s8!Jj~s8!, ~2.5!

where J0(s)52“P0(s) is the deterministic component o
the pressure gradient andG0i j (s,s8) is the dipolar tensor@21#

G0i j ~s,s8!5
]2G0~s,s8!

]si]sj
. ~2.6!

By means of an iterative expansion of the pressure grad
in Eq. ~2.5! the Neumann series is generated. Summation
the series leads to the following exact expression

Ji~s!5E ds8Ti j
21~s,s8!J0 j~s8!, ~2.7!

where the tensor kernelTi j is given by
-
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Ti j ~s,s8!5d i jd~s2s8!2G0i j ~s,s8!dK~s8!. ~2.8!

In the case of constantJ̄ and homogeneous disorder, th
mean fluxQ̄ is constant, and it leads to the local effectiv
Darcy’s law Q̄5KeffJ̄, whereKeff is the uniform effective
permeability @1#. In the dispersive case the mean flux
given by means of the nonlocal expression

Qi~s!5E ds8 Ki j* ~s,s8!Jj~s8!, ~2.9!

whereKi j* (s,s8) is the effective permeability kernel. In ligh
of Eqs.~2.5! and ~2.9! the mean pressure gradient is relat
to the effective permeability kernel via the integral equati

Ji~s!5J0i~s!2E ds8E ds9G0i j ~s,s8!dKjm* ~s8,s9!Jm~s9!,

~2.10!

wheredKjm* (s,s8)5K̄d jmd(s2s8)2Kjm* (s,s8) represents the
fluctuation component of the kernel. An equivalent expr
sion can be obtained by means of Eq.~2.7!, i.e.,

Ji~s!5E ds8Mi j ~s,s8!J0 j~s8!, ~2.11!

where

Mi j ~s,s8!5Ti j
21~s,s8!. ~2.12!

In view of Eqs.~2.10! and ~2.11! the following relationship
is established between the permeability kernel and the t
point correlation functionMi j (s,s8):

M̃ i j
21~k!5d i j1G̃0ik~k!dK̃k j* ~k!, ~2.13!

where

dK̃k j* ~k!5K̄dk j2K̃k j* ~k!, ~2.14!

The correlation functionM̃ i j (k) can be calculated using th
field-theoretic formulation of@20# that we outline briefly
here. First, the fieldTi j

21(s,s8) is expressed in terms ofd
auxiliary fieldsf i(s), i51,...,d and their complex conju-
gatesf i* (s) as follows:

Ti j
21~s,s8!5^f i* ~s!f j~s8!&. ~2.15!

The brackets denote the average with respect to the Gau
measure

P~f i* ,f i !5
1

Z
expS 2 (

i , j51

d E dsE ds8f i* ~s!

3Ti j ~s,s8!f j~s8!D , ~2.16!

where the integral( i , j51
d *ds*ds8f i* (s)Ti j (s,s8)f j (s8) rep-

resents the disorder Hamiltonian andZ denotes the corre
sponding partition function. Using the replica trick@22#, i.e.,
Z21lnZ5limn→0 (lnZ

n)/n, we obtain the following expres
sion for the correlation function~2.15!:
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Ti j
21~s,s8!5 lim

n→0
K (

a51

n f i*
a~s!f j

a~s8!

n L
Heff

, ~2.17!

whereHeff denotes the effective Hamiltonian and^ &Heff the average with respect to the effective measure, which involv

functional integral of the replica fieldsf i
a(s), f i*

a(s), wherei51,...,d anda51,...,n. The standard procedure for evaluatin
the stochastic average ofTi j

21(s,s8) over the disorder is as follows: first, the disorder average of the expression~2.17! is
determined assuming that the number of replicas is an integer; this leads to an effective probability measure. T
functional integral over the replicas is estimated using a variational approximation. The latter is obtained by establis
upper bound for the free energy functional of the effective probability measure by means of a variational free energy.
the correlation functionMi j (s,s8) is obtained by minimizing the upper bound at the limitn→0. This procedure is based on th
assumptions that the order of the zero-replica limit and the stochastic average operator can be commuted, and that th
continuation of the average over the replica fields whenn→0 exists. The first step leads to a disordered-averaged proba
measureP(f i

a ,f i*
a)}exp@2Heff(fi

a ,fi*
a)#. The effective HamiltonianHeff(fi

a ,fi*
a) is given by

Heff~f i
a ,f i*

a!5(
i51

d

(
a51

n E dsuf i
a~s!u22 1

2 (
i , j ,k,l51

d

(
a,b51

n E dsE ds8E ds1E ds2cK~s12s2!G0i j ~s2s1!

3G0kl~s82s2!f i*
a~s!f j

a~s1!fk*
b~s8!f l

b~s2! ~2.18!
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and it involves a standard quartic coupling between rep
fields. The second step involves the approximation of
effective probability measure by means of a variatio
Gaussian measure

P0~f i
a ,f i*

a!}exp@2H0~f i
a ,f i*

a!#, ~2.19!

where the HamiltonianH0(f i
a ,f i*

a) couples the replica
fields diagonally by means of the two-point functio
Ci j

21(s,s8). The variational approximation of the correlatio
functionMi j (s,s8) is given by the optimal variational corre
lation, denoted byCi j* (s,s8). The latter is obtained using th
following variational inequality

f< f 01 lim
n→0

^Heff~f i
a ,f i*

a!2H0~f i
a ,f i*

a!&0
Vn

,

~2.20!

whereV denotes the volume of the system,f denotes the
free-energy density~per unit volume and per replica! func-
tional of the effective probability measure,f 0 denotes the
Gaussian free energy density, and^ &0 denotes the averag
over the Gaussian measure. Thus, the replica averages o
right-hand side of Eq.~2.20! can be explicitly evaluated by
means of Gaussian integrals. The final step involves
minimization of the functional on the right-hand side of E
~2.20! with respect to the variational correlation. This proc
dure, in view of Eq.~2.13!, leads to the following relation for
the effective permeability kernel:

K̃k j* ~k!2dk jK̄5E dk1
~2p!d

c̃K~k1!M̃ km~k2k1!

3G̃0mj~k2k1!, ~2.21!

where in Eq.~2.21! C̃i j* (k) has been replaced withM̃ i j (k).
The expressions~2.13! and~2.21! provide a system of equa
tions that determines the effective permeability ker
a
e
l

the

e
.
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l

K̃k j* (k). The latter includes the mean-field contributionK̄I ,
and the fluctuation partdK̃k j* (k) that represents the hetero
geneity of the medium. As we show below, the finite-si
effects are due to the fluctuation part. In the following se
tion we investigate certain cases in which explicit solutio
for the kernel are possible.

III. SOLUTIONS FOR THE EFFECTIVE
PERMEABILITY KERNEL

First we investigate stochastically~macroscopically! iso-
tropic media in which the two-point correlationcK(s2s8) is
a spherically symmetric function of the distancer5us2s8u.
This restriction does not limit the analysis, since anisotro
media can be reduced to isotropic by a rescaling of the
ordinate axes as we show below. The Fourier transform
the isotropic dipolar tensor is given by

G̃0i j ~k!52
kikj

k2K̄
, ~3.1!

and the effective permeability kernel is generally expres
as follows@23#:

K̃ i j* ~k!5K̃ l* ~k!P̃i j ~k!1K̃ t* ~k!R̃i j ~k!, ~3.2!

whereK̃ l* (k) denotes the longitudinal andK̃ t* (k) the trans-
verse effective permeability components;P̃i j (k) and R̃i j (k)
represent orthogonal, idempotent projection operators tha
momentum space are given by

P̃i j ~k!5
kikj
k2

~3.3!

and

R̃i j ~k!5d i j2 P̃i j ~k!. ~3.4!

Equation~2.13! then becomes
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M̃ i j
21~k!5d i j1

K̄2K̃ l* ~k!

K̄
P̃i j ~k!. ~3.5!

Equation ~3.5! can be inverted, using the idempotence
P̃i j (k), to obtain

M̃ i j ~k!5R̃i j ~k!1 P̃i j ~k!
K̄

K̃ l* ~k!
. ~3.6!

The two-point correlationM̃ i j (k) can be eliminated from Eq
~2.21! using Eq.~3.6! combined with the properties of th
projectors. The following equation is thus obtained:

K̃ i j* ~k!5d i j K̄2E dk1

~2p!d
c̃K~k2k1!

P̃i j ~k1!

K̃ l* ~k1!
. ~3.7!

Equation ~3.7! can be solved exactly at the infrared lim
kj→0, where we obtain

K̃ i j* ~0!5d i j K̄2
cK~r50!

K̃ l* ~0!
E dVd

Sd
P̃i j ~Vd!

5d i j S K̄2
sK
2

dK̃l* ~0!
D , ~3.8!

where *dVd denotes integration over the surface of t
d-dimensional unit sphere. In view of the projection deco
position of the effective permeability kernel Eq.~3.8! leads
to the following expressions for the longitudinal and tran
verse components

K̃ l* ~0!5K̄2
sK
2

dK̃l* ~0!
~3.9!

and

K̃ t* ~0!5K̃ l* ~0!, ~3.10!

where K̃ l* (0)5K̃ l* (k50) and K̃ t* (0)5K̃ t* (k50). The so-
lution of Eq. ~3.9! for K̃ l* (0) is

K̃ l* ~0!5
K̄

2
F11S 12

4sK
2

dK̄2D 1/2G . ~3.11!

Equation~3.11! is the variational approximation obtained b
means of the optimal Gaussian measure and is valid a
perturbation orders. Hence, we believe that it provides m
accurate estimates than low-order perturbation calculat
in the case of moderate heterogeneity. At the limit of we
heterogeneitym!1 the longitudinal kernelK̃ l* (0) is given
by the first-order approximation

K̃ l*
~1!~0!5K̄2

sK
2

dK̄
, ~3.12!

which agrees with standard first-order perturbation anal
@12#.
f
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-
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In the case of a uniform mean pressure gradientJ̄, the
following uniform effective permeability is obtained afte
integration of the exact kernel

Keff~`!5E ds8K* ~s2s8!5K̃* ~k50!. ~3.13!

This asymptoticKeff(`) is involved in the effective Darcy’s
law Q̄5Keff(`)•J̄, that is widely used in hydrology@1#. In
view of Eqs.~3.2! and~3.10!, Keff(`) can be replaced by the
scalar permeability

Keff~`!5K̃ l* ~0!. ~3.14!

The variational approximation ofKeff(`) given by Eq.~3.11!,
satisfies the standard bounds

~K21!21<Keff~`!<K̄. ~3.15!

In view of Eqs.~3.12! and ~3.14! the first-order approxima-
tion of the effective permeability is given by

Keff
~1!5K̄2

sK
2

dK̄
. ~3.16!

It should be emphasized that the lowest disorder correctio
fully determined by two-point correlations. Hence, it is
valid approximation even for non-Gaussian permeability d
tributions.

In the preasymptotic regime Eq.~3.7! leads to the follow-
ing expressions for the longitudinal and transverse com
nents:

K̃ l* ~k!5K̄2E dk1

~2p!d
c̃K~k2k1!

K̃ l* ~k1!

~k•k1!
2

k2k1
2

, ~3.17!

and

K̃ t* ~k!5K̄2
1

d21
E dk1

~2p!d
c̃K~k2k1!

K̃ l* ~k1!
F12

~k•k1!
2

k2k1
2 G .
~3.18!

Note that Eq. ~3.17! is a nonlinear integral equation i
K̃ l* (k), while K̃ t* (k) is given by means of a momentum
integral of theK̃ l* (k). The longitudinal~transverse! perme-
ability can be decomposed into a mean part equal toK̄ and a
fluctuation partdK̃ l* (k) @dK̃ t* (k)#. The kerneldK̃ l* (k) is
given by means of the following equation:

dK̃ l* ~k!5E dk1

~2p!d
c̃K~k2k1!

K̄2dK̃ l* ~k1!

~k•k1!
2

k2k1
2

. ~3.19!

The ultraviolet limit ofdK̃ l* (k) is obtained from Eq.~3.19!
by means of the transformationk85k2k1 that leads to the
following expression:

dK̃ l* ~`!5
sK
2

K̄2dK̃ l* ~`!
. ~3.20!
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Using Eq.~3.20! the longitudinal kernelK̃ l* (k) can be ex-
pressed as

K̃ l* ~k!5K̄2dK̃ l* ~`!1dK̃ l ;nloc* ~k!, ~3.21!

where

dK̃ l ;nloc* ~k!5dK̃ l* ~`!2dK̃ l* ~k!. ~3.22!

The uniform part inK̃ l* (k) represents the local compone
that leads to ad function kernel in real space. Th
dK̃ l ;nloc* (k) represents the nonlocal component of the kern
Analogous relations hold for the transverse kernelK̃ t* (k).
Hence, the fluctuation kernel can be decomposed into lo
and nonlocal components as follows:

dK̃ i j* ~k!5@dK̃ l* ~`!P̃i j ~k!1dK̃ l* ~`!R̃i j ~k!#

2@dK̃ l ;nloc* ~k!P̃i j ~k!1dK̃ t;nloc* ~k!R̃i j ~k!#.

~3.23!

Finally, we evaluate the effective kernel in the case o
stratified, macroscopically anisotropic, three-dimensio
medium with correlation lengthj15j25j i in the longitudi-
nal ~in-plane! direction andj35j'5ej i in the transverse
~out-of-plane! direction, wheree denotes the anisotropy ra
tio. In this case, Eq.~3.7! is valid in the rescaled coordinat
systemki85j iki in which the medium looks isotropic. Th
following expression is obtained:

K̃ i j* ~0!5d i j K̄2
sK
2

K̃ l* ~0!
q i j , ~3.24!

whereq i j is the anisotropy tensor

q i j5
j ij j
j i
2 E dV

4p

u iu j

~sin2 x1e2 cos2 x!
, ~3.25!

andu i denotes the direction cosine. The elements of the
agonal anisotropy tensor are given by

q115q225
1

2~e221! S e2 tan21Ae221

Ae221
21D , ~3.26!

q335
e2

e221 S 12
tan21Ae221

Ae221
D , ~3.27!

and they are plotted in Fig. 1 versus the anisotropy ratio.
effect of the fluctuations is more pronounced, leading
lower effective permeability, in the direction of higher co
relation.

IV. PERTURBATION ANALYSIS AND SOLUTION
OF THE DISPERSIVE PART

The main focus of the analysis is the solution of the no
linear integral equation~3.17! that determines the longitudi
nal effective permeability kernel. Equation~3.17! can be
classified as a nonlinear Fredholm equation of the sec
kind that can be solved numerically@24,25#. A solution can
l.

al

a
l

i-

e
o

-

d

be obtained by means of the iterative method@26# starting
with K̃ l (0)* (k)5K̄ as the initial approximation. A differen
approach is by means of a perturbation expansion@25# that
leads to a power series in the permeability variance. T
partial sum of all orders lower than or equal ton is denoted
by K̃ l*

(n)(k). Since Eq.~3.17! is nonlinearK̃ l (n)* (k) is in
general different fromK̃ l*

(n)(k), with the exception ofn
50 andn51. Both methods should converge for weak d
orderm,1. Let D(k) denote the dispersive part of the e
fective permeability kernel that represents the following
finite sum:

D~k!5 (
n51

`

gn~k!m2n. ~4.1!

In view of Eq. ~4.1! K̃ l* (k)5K̄@12D(k)#, and Eq.~3.8! is
then expressed as

D~k!5m2E dk1
~2p!d

r̃K~k2k1!

12D~k1!

~k•k1!
2

k2k1
2 , ~4.2!

wherer̃K(k) denotes the Fourier transform of the permeab
ity correlation function. The functionsgn(k) are determined
by equating the coefficients of equal powers inm on both
sides of Eq.~4.2!. The first dispersion function is

g1~k!5E dVdE
0

` dk1
~2p!d

k1
d21~k2 k̂•k1!

2

~k2k1!
2 r̃K~k1!,

~4.3!

where k̂ is the unit vector in the direction ofk. It can be
shown that thegn(k) are positive everywhere; thus, the co
vergence criterion for the series ism2gn11(k)<gn(k) for all
n>1, and the error incurred by terminating the series at

FIG. 1. Plot of the longitudinal and transverse components
the anisotropy tensor vs the anisotropy ratio.
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der n is always less thangn11(k)m
2n11 @27#. Hence, the

effective permeability kernel can be approximated with ar
trary accuracy in the casem,1.

We assume a weakly heterogeneous medium withm2

!1. In the case of a one-dimensional medium we obtain
following expression for the perturbationg1(k):

g1~k!5E
2`

` dk1
2p

r̃~k1!51. ~4.4!

Hence, ford51 the effective permeability kernel is pure
local. Next, we assume an isotropic medium with an ex
nential two-point permeability correlation function

rK~r !5expS 2
r

j D , ~4.5!

wherej is the isotropic permeability correlation length. Th
Fourier transform ofrK(r ) is given by

r̃K~k!5
2djdpd/2

G~22d/2!

1

~11j2k2!~d11!/2
, ~4.6!

where G~ ! denotes theG function. The functiong1(k) is
evaluated in the Appendix ford53, and it is plotted in Fig.
2 ~curve 1! versus the dimensionless momentumkj. The
function g1(k) and consequentlydK̃ l*

(1)(k) increase mono-
tonically with kj. Both functions have a broader Fouri
spectrum than the two-point correlation~4.6!, which decays
to zero within the rangekj>1. This behavior is due to the

FIG. 2. Plots of the dispersive partg1(k) ~curve 1! and the
nonlocal componentg1(`)2g1(kj) ~curve 2! of the effective per-
meability vs the dimensionless momentumkj. Both curves have
been obtained for an exponential permeability correlation mo
with lengthj.
-

e

-

convolution of the permeability two-point correlation wit
the projection operatorP. In the Appendix we also obtain th
infrared limit

lim
kj→0

dK̃ l*
~1!~k!5

sK
2

3K̄
, ~4.7!

which is in agreement with Eq.~3.12!, and the ultraviolet
limit

lim
kj→`

dK̃ l*
~1!~k!5

sK
2

K̄
. ~4.8!

The nonlocal part of the permeability kernel perturbation
given by

dK̃ l ;nloc* ~1! ~k!5
sK
2

K̄
@g1~`!2g1~kj!#. ~4.9!

The functiondK̃ l ;nloc* (1) (k) is a positive and monotonically de
creasing function of the dimensionless momentumkj, which
tends to zero at infinity. In Fig. 2~curve 2! we plot the
nonlocal componentg1(`)2g1(kj) versuskj.

V. EFFECTIVE PERMEABILITY OF FINITE MEDIUM

The analysis of the effective permeability kernel equ
tions in Secs. III and IV above is based on the assumption
a medium with an infinite support scale, which is in agre
ment with a scale-independent effective permeability. T
assumption is justified only if the size of the support sign
cantly exceeds the memory length of the effective kernel
the case of a medium with finite support, the effective p
meability depends on the boundaries of the medium, nam
on the geometry of the support and the imposed bound
conditions on the pressure field. In the following, it is a
sumed that an isotropic length scaleL characterizes the siz
of the support. The effective permeability should refle
changes in the support scale due to the cutoff of correlati
between points separated by a distance greater than allo
by the support size. A detailed analysis of the effective p
meability of finite media should employ the homogeneo
Green’s function that honors the boundary conditions. Ho
ever, the Green’s function in a bounded domain is usua
obtained in terms of an infinite series, e.g., by means of
eigenfunction expansion, and it lacks translational inva
ance. This complicates the mathematical analysis so
even low-order calculations become very tedious. Here,
present an approximate model for the finite-size effects
circumvents these difficulties; this model can be viewed
an estimator that interpolates the effective permeability
tween the arithmetic mean and the asymptotic value.
assume Dirichlet pressure boundaries in the longitudinal
rection and Neumann no-flow boundaries in the transve
directions. We use the infinite Green’s function and thus
glect finite-size effects near the boundaries. This assump
permits the use of the translationally invariant equations
the effective permeability obtained in Secs. II–IV abov
We model the effect of the support on the effective perm
ability by means of fluctuation filters that cut off th

el
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spectral density outside a sphere with radius equal tokmax
5L52p/L in momentum space. The mean flux at locatios
is then given by the following filtered equation:

Q̄L~s!5E ds8FL~s2s8!@KL* ~s2s8!• J̄~s8!#, ~5.1!

where the convolution integral is unconstrained, but the fi
functionFL(s2s8) cuts off the integral when the points8 is
located outside the support boundaries. The nonlocal ef
tive permeabilityKL* (s2s8) also has an implicit scale depen
dence, which we investigate in more detail below. The eff
of the filter depends on the size of the memory length of
kernelKL* (s2s8) relative to the support scale: if the memo
length is significantly smaller than the support scale, the
ter can be eliminated from Eq.~5.1! leading to a mean flux
independent of the support size. In the case of a unifo
mean pressure gradient Eq.~5.1! can be expressed as

Q̄~L!5Keff~L!J̄, ~5.2!

where the scale-dependent uniform effective permeabilit
given by

Keff~L!5K̄I2E dk

~2p!d
F̃L~k!dK̃L* ~k!, ~5.3!

and the fluctuation permeability component is

dKeff~L!5E dk

~2p!d
F̃L~k!dK̃L* ~k!. ~5.4!

Let Vd(L) denote the volume of thed-dimensional sphere
andu(L2k) the unit step function. The filter function

F̃L~k!5
~2p!d

Vd~L!
u~L2k! ~5.5!

eliminatesdKeff(L) for a pointlike support, while it yields
the asymptotic effective permeability for an infinite suppo
The integral equations that determine the effective per
ability kernels are also filtered with an appropriate functi
C̃L(k) that eliminates the fluctuations in the case of vani
ing support size and yields the nonfiltered equations, nam
~3.17! and~3.18!, in the case of infinite support scale. The
constraints are satisfied by the momentum filter

C̃L~k!5u~k2L!. ~5.6!

In the case of macroscopic isotropy the fluctuation com
nentdKeff(L) of Eq. ~5.4! is expressed as

dKeff~L!5
1

~2p!d
E
0

`

dk kd21F̃L~k!S E dVddK̃L* ~k! D ,
~5.7!

wheredK̃L* (k) is a tensor with isotropic momentum depe
dence. Evaluation of the surface integral leads to an is
agonal permeability tensor following the equation

E dVddK̃L* ~k!5IVdĨK~k;L!, ~5.8!
r

c-

t
e

l-

m

is

.
e-

-
ly

-

i-

where ĨK(k;L) is a functional of the permeability distribu
tion that represents the spectral density ofdKeff(L) and sat-
isfies the equation

ĨK~k;L!5
tr dK̃L* ~k!

d
. ~5.9!

In view of Eqs.~5.3!, ~5.4!, and ~5.7!–~5.9! the scalar per-
meability is given by

Keff~L!5K̄2dKeff~L!, ~5.10!

whereKeff(L) anddKeff(L) represent the magnitudes of th
diagonal kernelsKeff(L) anddKeff(L). The fluctuation com-
ponentdKeff(L) is given by

dKeff~L!5E dk

~2p!d
F̃L~k!ĨK~k;L!. ~5.11!

The asymptotic effective permeabilitydKeff(0) is given in
terms of the spectral density functionĨK(k;L) by means of
the expression

dKeff~L50!5ĨK~k50;L50!. ~5.12!

The spectral densityĨK(k;L) can be evaluated using Eq
~5.9! and ~3.17! that lead to the following:

ĨK~k;L!5
1

d
E dk1

~2p!d
c̃K~k2k1!

K̃ l* ~k1!
C̃L~k1!. ~5.13!

In light of Eq. ~4.2! ĨK(k;L) is given by means of the fol-
lowing expression:

ĨK~k;L!5
sK
2

dK̄
E dk1

~2p!d
r̃K~k2k1!C̃L~k1!

12D~k1!
. ~5.14!

The first-order approximation of the spectral density is

ĨK~1!~k;L!5
sK
2

dK̄
f̃ ~1!~k;L!, ~5.15!

where f̃ (1)(k;L) denotes the normalized spectral density th
represents the following integral

f̃ ~1!~k;L!5E dk1
~2p!d

r̃K~k2k1!C̃L~k1!. ~5.16!

Thus, the first-order fluctuation perturbation ofdKeff(L) is
given by

dKeff
~1!~L!5

sK
2

dK̄
h~1!~L!, ~5.17!

where the support functionh(1)(L) represents the following
integral

h~1!~L!5
d

Ld E
0

L

dk kd21 f̃ ~1!~k;L!. ~5.18!
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In the case of a three-dimensional medium with exponen
decay of permeability correlations, the functionsf̃ (1)(k;L)
andh(1)(L) are given by the following expressions:

f̃ ~1!~k;L!512
1

2kjp
lnF11j2~k2L!2

11j2~k1L!2G
2
1

p
tan21F 2jL

11j2~k22L2!G ~5.19!

and

h~1!~L!5
1

2
2

1

pLj
2
1

p
tan21S 4j2L221

4Lj D
1S 116j2L2

4pj3L3 D ln~4j2L211!. ~5.20!

In Fig. 3 we plot the normalized spectral densityf̃ (1)(k;L)
versus the dimensionless momentumkj for different values
of the cutoffLj. The normalized spectral density increas
monotonically and tends asymptotically to unity. In Fig.
we plot thef̃ (1)(k;L) versus the cutoffLj for three different
values of the momentumkj. The f̃ (1)(k;L) is a decreasing
function of the cutoff that tends asymptotically to zero wh
Lj tends to infinity. In Fig. 5 we present a plot of the supp
functionh(1)(L) versus the cutoff. The support function d
creases~increases! monotonically with the dimensionles
cutoff ~support scale! from one ~zero! to zero ~one! with a
rate that is slower than exponential. This becomes more
dent in terms of the function

FIG. 3. The first-order spectral density functionf̃ (1)(k;L) vs the
dimensionless momentumkj for an exponential permeability cor
relation model. Five different values of the dimensionless cutoffLj
are shown:Lj52 ~curve 1!, Lj54 ~curve 2!, Lj56 ~curve 3!,
Lj58 ~curve 4!, andLj510 ~curve 5!.
al

s

t

i-

h~1!S Lj D52 ln@h~1!~L!21#, ~5.21!

which we plot in Fig. 6 versus the dimensionless supp
scale. If the support function decreased exponentially,
plot of h (1)(L/j) would be a straight line with positive slope

FIG. 4. The first-order spectral density functionf̃ (1)(k;L) vs the
dimensionless cutoffLj for an exponential permeability correlatio
model. Three different values of the dimensionless momentum
shown:kj52 ~curve 1!, kj56 ~curve 2!, andkj510 ~curve 3!.

FIG. 5. Plot of the support functionh(1)(L) vs the dimension-
less momentum cutoffLj.
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Instead,h (1)(L/j) is a convex up function, which indicates
slower-than-exponential decay.

Finally, the preasymptotic uniform effective permeabili
is given by

Keff
~1!~L!5K̄2

sK
2

3K̄
h~1!~L!, ~5.22!

The finite-size behavior represented by Eq.~5.22! is physi-
cally meaningful: at the ultraviolet limitL→`, i.e., for van-
ishing support length, Eq.~5.22! tends to the arithmetic
mean, while at the infrared limitL→0, i.e., for an infinite
support, Eq.~5.22! tends to the value of the asymptotic e
fective permeability.

VI. COMPARISONS WITH EXPERIMENTAL RESULTS

In this section we compare our theoretical analysis w
experimental and numerical estimates of the effective per
ability obtained in@18#. We begin by pointing out a system
atic difference: in our work the effective permeability fo
lows from a stochastic average over the local permeab

FIG. 6. Plot of the functionh (1)(L) vs the dimensionless sup
port scaleL/j.
h
e-

y

probability distribution. In the approach of@18# the effective
permeability is evaluated either experimentally or nume
cally using spatial averaging of the fluid flux. As we me
tioned in the Introduction the spatial and the ensemble a
ages coincide only if the flux and the pressure gradient
ergodic. The authors in@18# have obtained permeability mea
surements for two porous blocks of sandstone and limes
of dimensions 15315350 cm3. Each of the original sample
was cut into three intermediate blocks of dimensio
153 cm3, and finally 25 cylindrical plugs were obtained from
each intermediate block. The local permeability probabil
distribution was inferred from the 300 samples obtain
from each block. The effective permeabilities for mixe
Dirichlet-Neumann conditions were measured at the th
scales. The effective permeability of the intermediate blo
was also evaluated by solving Darcy’s equation numerica
and using the box integration method as explained in@18#.
Numerical simulations were carried out on 20 rando
samples that were generated based on the experimental
ability distributions, and the permeability mean was eva
ated numerically and compared to the experimental meas
ments. The coefficient of variation for the sandstone blo
was found to satisfym,1, while for the limestone blocks i
was found thatm.1. Our low-order explicit calculations ar
applicable only in the case of the sandstone experiments.
m.1 estimates that account for the large distribution va
ance are required, e.g.,@9,13,28#.

In Table I we compare the effective permeability obtain
using the first-order perturbation analysis above with the
perimental and numerical values for the sandstone obta
in @18#. The correlation lengths of the local permeabili
were estimated in@18# to be about 2% of the support length
in view of which we use the asymptotic expression~3.16! for
the Keff

(1) . The first four columns of Table I are taken from
Table 5 of @18#: they represent from left to right the arith
metic mean, the coefficient of variation, the effective perm
ability Keff

(meas)measured in the laboratory, and the calcula
effective permeabilityKeff

(cal) . The fifth column is the pertur-
bation estimate obtained by means of Eq.~3.16!. Note that
the third intermediate block is characterized by a measu
value that exceeds the arithmetic mean. This was expla
in @18# as being due to a large number of missing permea
ity data from the third block due to mechanical failures du
ing the preparation of the samples. It is clear thatKeff

(1) ap-
proximatesKeff

(meas) more accurately thanKeff
(cal) . However,

both theKeff
(1) and theKeff

(cal) overestimate the experimenta
value Keff

(meas). This systematic difference could be due
upper
TABLE I. The entries of this table provide a comparison between the laboratory values~column 3! and
the numerical estimates~column 4! of the permeabilities in@3# and the variational approximation~column 5!
of the effective permeability given by~3.16!. All permeability values are in millidarcy~1 darcy50.9873
10212m2!. The asterisk denotes that the measured permeability of the third block fails to satisfy the
bound of Eq.~3.15!.

Sandstone K̄ m Keff
(meas) Keff

(cal) Keff
(1)

First Intermediate block 311 0.35 270 304 298
Second Intermediate block 250 0.46 220 243 232
* Third Intermediate block 129 0.54 150 122 116
Global block 230 0.54 210 218 208
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55 7297VARIATIONAL CALCULATION OF THE EFFECTIVE . . .
anisotropic effects. Finally, the effective permeability is se
to decrease from the value 230 mD, which is the total ar
metic mean at the local scale to 208 mD at the global sc
This is in general agreement with the behavior of the supp
function. However, a comprehensive test of the support fu
tion would require permeability measurements for seve
intermediate scales and accurate characterization of the
relation lengths.

VII. CONCLUSIONS

We have calculated the preasymptotic effective perm
ability of heterogeneous media using the replica-variatio
approach. We have given explicit solutions for the integ
equations satisfied by the effective permeability kernel
specific cases, and we have evaluated the uniform effec
permeability for homogeneous disorder. The effects of
support scale have been analyzed in terms of an approxim
model that uses momentum filtering of the fluctuations. T
finite-size behavior is obtained in terms of a support funct
that has been calculated to lowest order for exponential
cay of correlations. The support function has been found
increase towards its asymptotic value at a rate that is slo
than exponential. Higher-order solutions of the integral eq
tions that determine the effective permeability kernel me
further study, possibly by means of numerical techniqu
Finally, it has been assumed in this investigation that
disorder is homogeneous with short-range correlatio
These assumptions do not adequately represent all na
porous media@15,29#, even though they are sufficient fo
certain media at the laboratory scale.
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APPENDIX

In this Appendix we evaluate the integral of Eq.~4.3! for
the exponential correlation model. The functiong1(k) can be
expressed as

g1~k!5
2j3

p E
21

1

dxE
0

`

dk1
k1
2~k21k1

2x222kk1x!

~k21k1
222kk1x!~11j2k1

2!2
.

~A1!

Let

I 2
1~k,k1!5E

21

1

dx
~k21k1

2x222kk1x!

~k21k1
222kk1x!

. ~A2!

The surface integral is readily performed using a partial fr
tion expansion of the integrand leading to

I 2
1~k,k1!5

32~k1 /k!2

2
1
1

8
lnS k1k1

k2k1
D 2 ~k22k1

2!2

k3k1
.

~A3!

The integral over the scalar momentum is evaluated num
cally using aMAPLE integration routine based on an adapti
Newton-Cotes algorithm@30#. In order to obtain exact ex
pressions of the low and high momentum limits we use in
regime kj<1 a Taylor series expansion of the integra
aroundk50, and we evaluateg1(k) by applying the residue
theorem on the truncated integrand series. The first
terms of the series expansion ofg1(k) are

g1~k!5
1

3
1
2k2j2

15
1O~k4j4!. ~A4!

At the limit kj→` we assume an asymptotic expansion
the integrand around 1/k50 and integrate using the residu
theorem. The first two terms of this expansion are given

g1~k!511
2

k2j2
1OS 1

k4j4D . ~A5!
y-
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